Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria.
نویسندگان
چکیده
Repair of oxidative DNA damage in mitochondria was thought limited to short-patch base excision repair (SP-BER) replacing a single nucleotide. However, certain oxidative lesions cannot be processed by SP-BER. Here we report that 2-deoxyribonolactone (dL), a major type of oxidized abasic site, inhibits replication by mitochondrial DNA (mtDNA) polymerase gamma and interferes with SP-BER by covalently trapping polymerase gamma during attempted dL excision. However, repair of dL was detected in human mitochondrial extracts, and we show that this repair is via long-patch BER (LP-BER) dependent on flap endonuclease 1 (FEN1), not previously known to be present in mitochondria. FEN1 was retained in protease-treated mitochondria and detected in mitochondrial nucleoids that contain known mitochondrial replication and transcription proteins. Results of immunofluorescence and subcellular fractionation studies were also consistent with the presence of FEN1 in the mitochondria of intact cells. Immunodepletion experiments showed that the LP-BER activity of mitochondrial extracts was strongly diminished in parallel with the removal of FEN1, although some activity remained, suggesting the presence of an additional flap-removing enzyme. Biological evidence for a FEN1 role in repairing mitochondrial oxidative DNA damage was provided by RNA interference experiments, with the extent of damage greater and the recovery slower in FEN1-depleted cells than in control cells. The mitochondrial LP-BER pathway likely plays important roles in repairing dL lesions and other oxidative lesions and perhaps in normal mtDNA replication.
منابع مشابه
DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER), interacting with the replication protein A (RPA) and the flap endonuclease 1 (FEN1). DNA2 ca...
متن کاملImbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing.
The DNA base excision repair (BER) pathway is responsible for the repair of alkylation and oxidative DNA damage. The short-patch BER pathway, beginning with the simple glycosylase N-methylpurine DNA glycosylase (MPG), is responsible for the removal of damaged bases such as 3-methyladenine and 1,N(6)-ethenoadenine from the DNA after alkylation or oxidative DNA damage. The resulting apurinic site...
متن کاملKinetics of endogenous mouse FEN1 in base excision repair
The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced ye...
متن کاملSecond pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1).
Two forms of DNA base excision-repair (BER) have been observed: a 'short-patch' BER pathway involving replacement of one nucleotide and a 'long-patch' BER pathway with gap-filling of several nucleotides. The latter mode of repair has been investigated using human cell-free extracts or purified proteins. Correction of a regular abasic site in DNA mainly involves incorporation of a single nucleot...
متن کاملDna Repair
1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 16 شماره
صفحات -
تاریخ انتشار 2008